Red Hat .
Summit

Connect

- fectiat L el

RedHat .
Summit

Connect

OpenShift Serverless

The Next Generation of Application Architectures

& RedHat | intel

IAN ‘'UTHER’' LAWSON

Developer Advocate, OpenShift Evangelist
Red Hat

& RedHat | intel

Journey to the Cloud

Cloud Native

Enterprise

& RedHat | intel

Serverless - good idea, bad hame...

< (&

@ Rover Apps

new Support

Topology - Red Hat OpenShift X +

@ console-openshift-console.apps.penryn.demolab.local/tor

@ Mojo IT Toolbox Presentation Reso. Red Hat External

Red Hat

(¢]

</> Developer

+Add

Topology

Observe

Search

Builds

Pipelines

Environments

Helm

Project

ConfigMaps

Secrets

penShift

Project: serverlessdemo ¥

e

Application: All applications

Display options + Filter by resource + Y Name

D o domet

A dotnet-app 1

nouron0? 1

REV. quark

@ B e

Imported 5 Bookmarks Bar

h o * 0O B

Conroe OCP 7 Home - Workday ® On-boarding Juni...

v Find by name... /

Actions v

Details

Pods

All Revisions are autoscaled to 0.

Revisions
(o I

@ i 100%

Routes

RT

& RedHat

| intel

Persistent Application Model

Kubernetes maintains a ‘persistent application model’
In English - Containers orchestrated in Pods remain resident and reconciled

“Up all the time”

DC ceemitter 3

A cloudemitter-app $

& RedHat | intel

On-Demand Application Model

Knative Serverless introduces the concept of ‘on-demand orchestration’

In English - the Application is only resident in memory and active for the duration of an interaction

o

REV dotnet-00001 3

@ KSVC dotnet :

A dotnet-app ¢}

& RedHat | intel

The Mechanics of Serverless Orchestration

Applications defined by a ‘Knative Service
object’.

This provides a consistent traffic endpointin the
system, *regardless* of whether the target
Pod(s) are resident

This traffic endpoint handles the recreation of
the Pod(s) if required (when a call occurs to a
down-scaled Application)

(5]

console-openshift-console.apps.penryn.demolab.local, /ns/serverlessdemo/servi

<«/> Developer

+Add
Topology
Observe

earch

Builds
Pipelines
Environments

Helm

ConfigMaps

Secrets

RedHat
OpenShift

dotnet - Details - Red Hat Oper X =+

B Pre

Project: serverlessdemo v

Service details

ksvc dotnet

Details

101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122 stat

Save

& RedHat | intel

The Types of Serverless Orchestration

1010 1010

e\ 1ol ol

There are two mechanisms for triggering the
call/scale-up of a Serverless Application

1. “Serving"” - in which the trigger method s
traffic arriving at a service endpoint

2. "Eventing” - in which the trigger method is a

native “Cloud Event” arriving at the service
endpoint

& RedHat | intel

Eventing - Triggers and Cloud Events

Eventing works using a Project-bound event hub
called a “Broker”

You can have many Brokers in a project uniquely
identified by a name

These Brokers have “subscribers”, indicated by
the use of “Trigger” object

Cloud Events are basically a packet with an ID, an
Origin and a Type

The ID and Origin act as a unique identifier for
single send

The Type is matched against Triggers and if a
match occurs the Event (labels and payload) is
sent to the appropriate Knative service point,
which does the magic

Subscribers

KSVC' neuronO]

T trigger-neuronO1

KSVC neuron02

T trigger-neuron02

KSVC neuron03

T trigger-neuron03

KSVC' quarkusfunction

T trigger-quarkus

Show filters »

Show filters »

Show filters »

& RedHat | intel

Architectural Considerations

Serverless provides a highly efficient way of hosting fragmented Applications

You get much more *bang* for your *buck*; you can host hundreds of Application components in a much smaller
footprint

By doing a form of atomic decomposition on the functionality of your Applications and then implementing each
micro-service as either a Serving or Eventing Knative service you get agility and flexibility in developing and hosting
complex applications

Currently there are caveats - Knative Applications do not support the use of PVs (because the spin-up, spin-down

time is radically affected by the mounting and unmounting of external file systems), but this can be engineered
around

& RedHat | intel

Ease of Development

name: quarkusfunction
Kubernetes is hard and complex (although elegant and namespace: ""
simplein design) runtime: quarkus

registry: “”

. . id . | . del image: quay.io/ilawson/techtalkfunction
Knative Functions provide a simple programming mode trigger: events

for creating functions on Knative without having to have builder: default

in-depth knowledge of Knative, Kubernetes, containers builders:
or dockerfiles default: quay.io/boson/faas-quarkus-jvm-builder
jvm: quay.io/boson/faas-quarkus-jvm-builder

native: quay.io/boson/faas-quarkus-native-builder
buildpacks: []
buildEnvs: []

This provides a CLI extension for kn (the Knative CLI)
called “func”

envvars:
Using a yaml definition, this CLI will build and run, TESTENV: test env _value
including adding all the wiring and scaffolding, Knative
services/functions

& RedHat | intel

Demo Time....

& RedHat | intel

RedHat

Summit

Connect

Thank you

m linkedin.com/company/red-hat

facebook.com/redhatinc

twitter.com/RedHat

E youtube.com/user/RedHatVideos

& RedHat | intel

