

The Next Generation of Application Architectures

OpenShift Serverless

IAN ‘UTHER’ LAWSON
Developer Advocate, OpenShift Evangelist
Red Hat

Journey to the Cloud

Cloud Foundation Cloud Native
Enterprise

Cloud
Progression

Serverless - good idea, bad name…

Persistent Application Model

Kubernetes maintains a ‘persistent application model’

In English - Containers orchestrated in Pods remain resident and reconciled

“Up all the time”

On-Demand Application Model

Knative Serverless introduces the concept of ‘on-demand orchestration’

In English - the Application is only resident in memory and active for the duration of an interaction

The Mechanics of Serverless Orchestration

Applications defined by a ‘Knative Service
object’.

This provides a consistent traffic endpoint in the
system, *regardless* of whether the target
Pod(s) are resident

This traffic endpoint handles the recreation of
the Pod(s) if required (when a call occurs to a
down-scaled Application)

The Types of Serverless Orchestration

There are two mechanisms for triggering the
call/scale-up of a Serverless Application

1. “Serving” - in which the trigger method is
traffic arriving at a service endpoint

2. “Eventing” - in which the trigger method is a
native “Cloud Event” arriving at the service
endpoint

Eventing - Triggers and Cloud Events

Eventing works using a Project-bound event hub
called a “Broker”

You can have many Brokers in a project uniquely
identified by a name

These Brokers have “subscribers”, indicated by
the use of “Trigger” object

Cloud Events are basically a packet with an ID, an
Origin and a Type

The ID and Origin act as a unique identifier for
single send

The Type is matched against Triggers and if a
match occurs the Event (labels and payload) is
sent to the appropriate Knative service point,
which does the magic

Architectural Considerations

Serverless provides a highly efficient way of hosting fragmented Applications

You get much more *bang* for your *buck*; you can host hundreds of Application components in a much smaller
footprint

By doing a form of atomic decomposition on the functionality of your Applications and then implementing each
micro-service as either a Serving or Eventing Knative service you get agility and flexibility in developing and hosting
complex applications

Currently there are caveats - Knative Applications do not support the use of PVs (because the spin-up, spin-down
time is radically affected by the mounting and unmounting of external file systems), but this can be engineered
around

Ease of Development

Kubernetes is hard and complex (although elegant and
simple in design)

Knative Functions provide a simple programming model
for creating functions on Knative without having to have
in-depth knowledge of Knative, Kubernetes, containers
or dockerfiles

This provides a CLI extension for kn (the Knative CLI)
called “func”

Using a yaml definition, this CLI will build and run,
including adding all the wiring and scaffolding, Knative
services/functions

name: quarkusfunction
namespace: ""
runtime: quarkus
registry: “”
image: quay.io/ilawson/techtalkfunction
trigger: events
builder: default
builders:
 default: quay.io/boson/faas-quarkus-jvm-builder
 jvm: quay.io/boson/faas-quarkus-jvm-builder
 native: quay.io/boson/faas-quarkus-native-builder
buildpacks: []
buildEnvs: []
envVars:
 TESTENV: test_env_value

Demo Time….

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

